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Supplementary Results 
The results shown in Figure 3 demonstrate the potential for predictive signal 

improvement achieved with multi-modal fusion, without the need for instrument 

modification (Fig. 3c vs. 3a). When the assumptions are met, prediction can come 

close to actual measurement at the same resolution (Fig. 3c vs. 3d), providing a means 

of circumventing physical acquisition when not reasonably attainable. Finally, the 

advantage of multi-modality measurements over same-modality data processing is 

illustrated in Supplementary Figure 4, where in silico up-sampling via fusion is 

clearly superior to that of interpolation (Supplementary Fig. 4c vs. 4e). 

Good prediction is possible even for ion peaks reporting panels of ions, and it 

does not necessarily require uniquely resolved ion species. The m/z 747.5 image 

shown in Supplementary Figure 9 is an example from the same IMS experiment as in 

Figure 3. Although the nominal m/z peak is composed of multiple ion species (13C 

PE-NME2(16:0/18:0), 13C PE(P-16:0/22:6), and PA(18:0/22:6)), unresolved by the 

MS analyzer in this experiment, its overall reconstruction score of 86% indicates that 

for this IMS variable strong modeling and prediction is possible. For a multiple-

species variable such as this, the measured distribution is a superposition of the 

distributions of the individual species. As the fusion procedure has no information on 



the individual species and only has access to the combined peak distribution, its 

prediction for this variable will pertain to the combined panel. 

The fusion model also has the capability to predict at any spatial resolution 

between the low (native IMS) resolution and the high (microscopy) resolution. This is 

made possible by training the model on data that characterizes the tissue at different 

resolutions and letting the model generalize relationships that span the scales between 

the source resolutions. For example in Supplementary Figure 10, the ion m/z 778.5, 

which has been identified as PE(P-40:4) and gives a reconstruction score to H&E 

stained microscopy of 76%, is predicted at spatial resolutions of 100, 50, and 5 µm. 

Supplementary Figure 11 further extends these results for m/z 778.5 with 75 and 25 

µm predictions, and for comparison includes measured ion images acquired via time-

of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) instruments. 

The fusion process is not exclusive to a particular tissue or molecule type. 

Although many examples in this study focus on the lipid mass range and on mouse 

brain samples, Supplementary Figure 12 uses protein images of rat kidney measured 

between m/z 3,000 and 20,000. The example takes an IMS measurement of a renal 

cross-section at 100 µm resolution (a), with ion distributions localizing to the kidney 

cortex, medulla, and pelvis, and fuses it with an H&E stained microscopy image of 

the same tissue section at 5 µm resolution (b), measured after IMS analysis. The 

fusion result predicts protein ion abundance in the kidney up to the native microscopy 

resolution of 5 µm (c). 

The fusion method does not require multi-modal relationships to be defined 

prior to operation, but instead searches for them itself and evaluates whether they are 

sufficiently strong to drive prediction applications. As a result, the fusion method is 

not tied to any particular imaging technology, and will function with other modalities 

than IMS and H&E stained microscopy. The method can mine cross-modality 

relationships between any image types that share a common spatial basis, and use 

these modeled links for fusion-driven prediction. Supplementary Figures 13-16 show 

examples from an experiment where an IMS measurement of a coronal mouse brain 

section, acquired at 80 µm spatial resolution in the lipid mass range, is fused with an 

H&E stained microscopy image on the one hand and a Nissl stained microscopy 



image on the other hand. Both microscopy sources are measured at 10 µm resolution 

and acquired from neighboring tissue sections. The difference in stain type between 

the two fusion runs reveals different structures and tissue patterns in their respective 

microscopy sources, and thus influences the cross-modality connections that can be 

made to IMS variables. Supplementary Figures 13-16 illustrate that the developed 

fusion method is applicable across different image sources, and also demonstrate that 

prediction performance is dependent on the content and particular combination of 

source modalities. 

The ability of the fusion method to capture cross-modality relationships (and 

the evaluation step to accurately score them) is hard to assess on real-world biological 

measurements, as these data sets do not provide a gold standard to compare against. 

For this purpose, we created a synthetic multi-modal data set that mimics IMS and 

microscopy characteristics (e.g. spatial resolution, number of variables per pixel, etc.). 

We embedded into the data set known cross-modal and modality-specific patterns for 

the algorithm to find and use. In order to better approximate real measurement 

conditions, we also added a mixture of Gaussian and Poisson noise on top of these 

patterns to mimic measurement uncertainty and detector noise. The fusion task 

consists of integrating an IMS-like modality at 75 µm spatial resolution with a 

microscopy-like modality acquired at 5 µm, and to sharpen the IMS-like patterns to 5 

µm. Supplementary Figure 17 shows the method behavior and fusion result for three 

of the embedded patterns, each with differing amounts of cross-modal support. The 

first example (top) focuses on sharpening a pattern with strong cross-modal support 

across the entire tissue, and demonstrates excellent prediction. This indicates that the 

fusion method is able to detect such relationships even with substantial IMS and 

microscopy noise present in the measurements. The predictive power for this variable 

is also accurately captured by the reconstruction score, which reports a value of 87%. 

A second example (middle) shows method behavior in the case of a pattern that is 

only partially supported across modalities, with some tissue subareas providing good 

support and other subareas providing little to none. Also in this case the cross-modal 

prediction is excellent in areas that have a connection to the microscopy, but there is a 

serious prediction error in areas that do not have such a cross-modal connection for 



this variable. Since the reconstruction score is meant to summarize performance 

across all tissue, the presence of subareas with reduced fusion-driven prediction 

performance or IMS-specific features is reflected in the reduced reconstruction score 

of 81%. Additionally, the method pinpoints the tissue location of the modality-

specific feature through the absolute residual image, giving the researcher the 

information to assess whether this area of reduced prediction confidence overlaps with 

a tissue area of interest. Finally, the third and last example of Supplementary Figure 

17 (bottom) reports method behavior for a modality-specific pattern that does not 

have cross-modal support. Although the method tries to approximate the IMS pattern 

as best it can, using the vocabulary of microscopy-derived patterns available to it (the 

eight native patterns shown in Supplementary Figure 17 plus the patterns derived 

through textural filters etc.), good prediction is never really achieved and the low 66% 

reconstruction score accurately reports this to the user. In addition to assessing the 

behavior of the fusion method in various cross-modal support situations, the synthetic 

data set also highlights the necessity for multivariate fusion models rather than 

univariate measures such as correlation between modalities. A good example of this is 

the pattern at the top of Supplementary Figure 17. This pattern has great cross-modal 

support in a multivariate sense, since it can be approximated well by a combination of 

multiple microscopy-derived patterns. However, it does not have good cross-modal 

support in a univariate sense, since none of the microscope variables alone can 

provide a good approximation of the IMS pattern. Hence a correlation measure, which 

assesses univariate cross-modal support, would have reported a low value for this 

pattern and an opportunity to reveal and utilize cross-modal information would have 

gone unnoticed. Instead, when fusion is approached in a multivariate sense that allows 

pattern combinations (such as the linear models we develop here), the pattern is 

picked up, connected to the other modality, and reports an excellent score making 

fusion applications possible. A key observation is that most modalities will not 

provide patterns that directly correlate with patterns measured by another technology, 

and thus multivariate mixing-capable models are essential to making fusion and 

finding cross-modality information possible in the majority of cases. 

 



Supplementary Tables 
 
 
 
Supplementary Table 1 Case study overview and details. 

type
(staining)

pixel width (finest used)
(µm)

type
(focus)

pixel width
(µm)

type
(focus)

pixel width
(µm)

1 mouse brain (transversal) H&E 5 MALDI-TOF (lipids)
m/z 500 - 1000 100 MALDI-TOF (lipids)

m/z 500 - 1000

10 (Fig. 2-3, S1-2, S4-5)
100 (Fig. S6-9)

100, 50, 5 (Fig. S10)
100, 75, 50, 25, 5 (Fig. S11)

modeling and prediction method workflow
prediction vs. measurement
prediction at different spatial resolutions

2-3, S1-2, S4-11

2 rat kidney H&E 5 MALDI-TOF (proteins)
m/z 3000 - 21000 100 MALDI-TOF (proteins)

m/z 3000 - 21000 5 (Fig. 6, S12)
prediction in different tissue types
prediction of different molecule types
multi-modal enrichment

6, S12

3 mouse brain (transversal) H&E 0.33 MALDI-TOF (lipids)
m/z 500 - 1000 10 MALDI-TOF (lipids)

m/z 500 - 1000 0.33 (Fig. 4) prediction at sub-micron scales
prediction beyond the capabilities of single modality 4

4 mouse brain (coronal) H&E and Nissl 10 MALDI-TOF (lipids)
m/z 500 - 1000 80 MALDI-TOF (lipids)

m/z 500 - 1000 10 (Fig. S13-16) prediction using different data sources S13-16

5 synthetic synthetic 5 synthetic 75 synthetic 5 (Fig. S17) modeling algorithm check S17

6 mouse brain (transversal) H&E 5 MALDI-TOF (proteins)
m/z 3000 - 21000 100 MALDI-TOF (proteins)

m/z 3000 - 21000

5 (Fig. 1, S18)
100, 50, 5 (Fig. S19)

100 (Fig. S20)
multi-modal enrichment and denoising 1, S18-20

7 mouse brain (transversal) H&E 5
(same as case study 6)

MALDI-TOF (proteins)
m/z 3000 - 21000

100
(rectangular sub-area of 

case study 6)

MALDI-TOF (proteins)
m/z 3000 - 21000

5 (Fig. 5)
100 (Fig. S21) prediction in non-IMS-measured areas 5, S21

Demonstrates

Measured
microscopy modality

Measured
IMS modality

Predicted
IMS/microscopy modality

Case study FiguresTissue type

 


